« What do we make of Geode, VIA and Intel A100 powered devices? | Main | Keeping track of who makes (and sells) what »
March 3, 2008
Where will Intel's Atom chip fit in?
On March 3rd, 2008, Intel introduced the low-power Atom processor designed specifically for mobile internet devices. While desktop chips draw as much as 35 watts of thermal design power (TDP) and even ultra-low power Core Duos draw almost 10 watts, the Atoms will draw from 0.6 to 2.5 watts. Intel stresses that the chip is not a shrunken version of a desktop chip, but designed from the ground up. In a series of YouTube-style videos various Intel spokespeople describe Atom's use. It goes into really inexpensive ($250-400) notebooks. It is "Intel's architecture for mobile devices." It is for "devices that fit in pockets." And it is "the basis of new sexy: low power and small." And no fan is needed. Does this mean the Atom processors are meant to replace replace the ARM-based PXA processors that Intel jettisoned to Marvell?
It's really confusing with processors these days. Back in the early days of mobile computing everyone knew what to expect from an 8088 processor (including price, which was about $5), and then, say, a 386/16 or a 486/33. People even had a "feel" for how fast a Pentium 90 was going to drive an early Windows computer. Later, Intel's product lines mushroomed, but it was still kind of possible to guess how each would perform because in the public's mind, the clock speed of a computer chip determined how fast it was. Then Intel did away with that also, sort of, and now we have slower processors that are faster and faster ones that are slower. Processors are no longer sold on their specifications, but on what wonderful things Intel says they will do for us.
For those of us in the mobile field, one problem with Intel has always been that the company really had no mobile chips. Whatever found its way into notebooks was generally a crippled desktop processor. Sometimes crippled in terms of technology (like when one of two cores was simply disconnected as in the unloved Core Solo) and sometimes by running the poor thing with so little juice that it barely moved.
But Intel also had the PXA processors specifically developed for handheld devices you may say. Yes, they had, and it is not entirely clear why. Think back to the beginnings of Windows CE in the mid 1990s (it was introduced at Comdex 1996 to be exact). Windows CE began as a multi-processor architecture platform. Unlike desktop Windows PCs that almost exclusively relied on Intel, CE devices had a choice of several chip architectures. There was support for Hitachi's SuperH architecture and two variants of Silicon Graphic's MIPS engine, and then Microsoft announced support of the 486 and Pentium, the PowerPC 821, and the ARM architecture. I don't think the first three ever became real, but ARM support sure did. Anyway, the competition among chip manufacturers was heavy and resulted in sort of an "arms race" to deliver faster and more integrated chipsets. There quickly were faster versions of the Hitachi SH-3, Philips introduced the TwoChipPic set, and NEC the 4100 family. Toshiba announced its entry with the MIPS-based TX39 family of RISC processors (perhaps one of the quickest CE chips ever), and Digital Equipment Corporation the StrongARM 1100. And there was AMD with its 486-compatible Elan variants. Now that is competition.
Sadly, all that changed with Pocket PC 2002 when Microsoft dropped support of the MIPS, SH, and X86 architectures and mandated the use of an ARM core, which at the time was the SA1110 "StrongARM," and the ARM72xT and ARM92xT. That swiftly eliminated a whole bunch of CE device manufacturers from the market, and some never came back. At least, we thought at the time, ARM processors were made by Intel, Motorola, Texas Instruments, and ARM itself, but even then we assumed that there would be an emphasis on the Intel StrongARM and Intel's Xscale architecture.
XScale, of course, prevailed and was soon found in virtually all Windows CE devices. Now let's remember that StrongARM really wasn't an Intel invention at all. It originated with none other than the once mighty Digital Equipment Corporation, the supermini powerhouse that once seemed destined to replace IBM, but then meekly imploded and sold itself to Compaq, which meekly imploded and sold itself to HP. Somewhere along the process Intel picked up StrongARM and quickly morphed it into XScale. I remember several somewhat awkward conference calls where Intel reps tried to explain how XScale was different from StrongARM. In the end it really didn't matter as the Intel PXA chips became fairly competent workhorses for millions of Windows CE-powered devices.
However, XScale had fatal flaws. First, it couldn't run "real" Windows. Second, it wasn't a very lucrative business. And third, it was not invented here. So off it went, to Marvell. Marvell Technology Group -- a silicon solutions high tech firm based in Santa Clara, California -- officially took over Intel's communications and applications processors in November of 2006 and has since launched the PXA 3xx series, consisting of the high-end PXA320 running at 806MHz, the cost-optimized low-end PXA 300, and the PXA310. The 806MHz PXA320 is a scorcher as we found out in a review of the Trimble/TDS Nomad rugged handheld. Unfortunately, Marvell's marketing is so low-key that hardly anyone knows they exist. Check the tech specs of just about any Windows CE device and it still says "Intel PXA." And despite the remarkable power of the PXA320 chip, few have picked it up. Shame, that.
So now we have the Intel Atom chip. Designed from the ground up for mobile devices. Designed for cheap computers costing just 250-400 bucks. Not a shrunken desktop chip, but still one with 47 million transistors. One that goes into devices that fit into pockets but also on desktops, and those inexpensive notebooks. And then there's the new sexy, "low power and small." Why "Atom"? Because "it's the smallest element of computing."
Along with the Atom chip also comes Atom Centrino. With "Centrino" being a rather successful Intel strategy of bundling various Intel components and making the package look superior to just an Intel processor and then third party components, Centrino Atom is no surprise. Centrino Atom will include an Atom chip and companion chips for graphics and wireless for "the best mobile computing and Internet experience on these new devices."
The thermal design power (TDP) specs are certainly impressive. Just 0.6 to 2.5 watts, as opposed to almost ten for an ultra-low power Core Duo processor. And the 45nm process is unimaginably microscopic (the PXA processors use 90 nm) and certainly a testimony to Intel's expertise. Thermal design power, of course, is a somewhat odd measurement. It just describes, according to a Wiki entry, the "maximum amount of power the cooling system in a computer is required to dissipate."
To me, the question is where the chip will really fit in. One of the Intel clips has the spokesperson showing an OQO type of little computer with a slide-out keyboard. Quite obviously, the overall goal is to provide the kind and quality of internet access we've all become used to, and even more so since Apple showed that "real" browsing is possible even on something as small as the iPhone.
So what does Atom mean for the manufacturers of all those PXA-powered devices? With Marvell taking such a low-key approach, are they hustling to see if Atom perhaps is a better alternative? I am certain Intel hopes so. What are the respective power requirements? I don't think I've ever seen a TDP spec for the PXA chips. Whatever specs there are for the PXA320 would indicate substantial capabilities and power, but so far we haven't seen any device that takes advantage of all of its remarkable range of multimedia features (see Marvell PXA320 features).
There are, of course, other considerations. For example, we're seeing new products with Intel's A100/A110 chips that are part of Intel's UMPC 2007 platform. Those chips, essentially lower power M-cores, also use 90 nm technology, run at 600 and 800MHz and have 3 watt TDPs. Will these be totally replaced by the Atom chips that appear to have a range from 500MHz to 1.8GHz at lower to equal TDPs?
Time will tell.
Posted by conradb212 at March 3, 2008 5:53 PM