« Why the JTG Daugherty NASCAR racing team chose rugged Dells | Main | Optimizing the legacy Windows interface for touch and tablets »
June 25, 2013
Logic Supply's logical approach to engineering their own systems
When it comes to rugged computing gear, most people interested in this industry know the big players that dominate the market and get all the media coverage. But that's not everything there is. Unbeknownst to many outside of the circle of customers and prospects, a surprising number of smaller companies are designing and manufacturing rugged computing systems of one type or another. At times we come across them by chance. Other times they find us.
And so it was with Logic Supply, located in South Burlington, a small town in the northwestern part of Vermont. They call themselves "a leading provider of specialized rugged systems for industrial applications," and asked if we could include them in our resource page for rugged system vendors. We could. And that led to some back and forth where I learned that while Logic Supply distributes a variety of rugged/embedded systems and components, they have also begun developing their own high-end chassis under their own LGX brand. That was interesting, and so we arranged an interview with Rodney Hill, Logic Supply's lead engineer, on the company, and how they go about creating their own, home-developed solutions in addition to being a distributor of products engineered elsewhere.
RuggedPCReview: If you had to describe Logic Supply’s approach to case and system engineering in a minute or less, what would you say?
Rodney Hill (Logic Supply): So, LGX is Logic Supply’s engineering arm. The design approach for LGX systems and cases can be boiled down to three ideas. First is our “designed to be redesigned†philosophy. Seed designs that are scalable and modular. From a seed idea we can create a product line through swappable front- and back-plates or resized geometry. Second is mass customization — by using standardized screws, paints, sheet metal folds, and design concepts, we leverage mass produced hardware whenever possible to keep the cost low. And through our modular designs we customize the off-the-shelf by using “upgrade kits,†which are quick to source and are cost-effective. Finally, innovation, not invention! There is a difference. Add value to things that work well, but do not re-invent the wheel.
Was that under a minute?
RuggedPCReview: Almost. But now let’s expand. You said scalable, modular, and “designed to be redesigned.†What do you mean by this?
Rodney Hill (Logic Supply): Designing a new chassis is four to five times the price of redesigning a seed design. Much of the time wasted in projects is done so while selecting paints, screws, boxing, foam, metal fold designs, etc. By using standardized design methods and seed concepts, our team can immediately start adding value. Ultimately the customer is only paying for the design and not the time the engineers spent trying to get their act together. We will be faster and more focused on quality and containing costs and risk.
So, to your question, designed to be redesigned systems from LGX have already incorporated flexible features to accommodate 80% of the customizations that customers request with off-the-shelf hardware. The last 20% are resolved with ‘upgrade’ kits that will be included with the off-the-shelf chassis kit. But you’re also using the proven benefits of the rest of the chassis (EMI and RFI shielding, for instance), and only adding risk in small portions. Meaning the rest of the chassis is still meeting all the same design criteria it was originally intended to support. So you can easily customize it without the risk of any negative effects on any of those features.
In terms of scalability versus modularity — there are design themes seen in our cases. If you look carefully enough, you can begin to see connections between designs. The NC200 and the MK150 are two totally different designs – however they share about 80% of the same DNA, from vent holes to metal folds, etc.
RuggedPCReview: How does cooling play into ruggedization?
Rodney Hill (Logic Supply): Nature always wins. Meaning dust and water will destroy everything if given the chance. You need to decide how long the computer needs to live, and how much you’re willing to pay for it. Heat will shorten the life of components.
So in terms of chassis design concepts: Keep the chassis cool as possible and as quiet as possible. Intelligent design is required to incorporate standardized cooling methods and proven airflow paths to cool many types of devices. Fan diameter, placing, vent design all will have effects on the acoustic design as well. Logic Supply will engineer noise out of systems with fan-muffling technologies, maximizing air throughput with smaller, more simple fans by identifying inefficiencies in orifice design. In short, having a fan against a grille will kill 50-60% of the airflow and multiply the noise by two or three times.
Vent holes equal dust. Dust causes fans to break, which in turn results in hot computers. Eliminate vents and go fanless. The operational temperatures and ruggedness greatly increase. Logic Supply defines “fanless†different than the IMP mass market. Our definition is not simply “no fans.†It is more than that: no fans, no vents for dust and dirt, and maintain the ability to cool the computer system at 100% duty load for hours and days at a time. We want these systems to be heavy duty, and also to be able to last a long time. It is rated for high performance!
RuggedPCReview: Can you talk about the design process? How long does it take from start to finish?
Rodney Hill (Logic Supply): It happens pretty fast. This year we’ve done a fanless Mini-ITX case, a 1U rackmount case, a NUC [Next Unit of Computing] case, and we’re finalizing a fanless NUC case right now. We’ve also finished a number of customer-specific designs. These design concepts typically originate in sales — you know, this customer wants to do X and none of our existing solutions do it. But because we use seed designs, we don’t start from scratch. It really all depends, but usually designs take under three weeks, and prototypes are ready a few weeks after that. We review, test, and modify, then we’re typically getting production units in-house around five or six weeks after that.
These core platforms can then be sold off-the-shelf, or customers can either go the semi-custom route or more radically modify the design. For simple modifications (like back-plates, front-plates, and simple changes) maybe one to five days in design and a three to four day lead on parts. For customized chassis design with samples, five to six weeks, and four to six after that to mass production.
RuggedPCReview: Alright, finally, can you give us an example of a successful customer product development?
Rodney Hill (Logic Supply): Sure. Last year we worked with a company called StreamOn to make a custom appliance with off-the-shelf components. StreamOn offers streaming audio solutions for the radio broadcast industry. The hardware they were using at the time was going End-of-Life, and they also needed a more specialized embedded system because their business was growing and they wanted to offer more features to their customers. They needed a variety of other things — outsourced fulfillment and things like that — but from an engineering perspective it was mostly that — the EOL and specialization. And all while remaining affordable for their customers. We worked from an existing system design — the ML250 — and customized it toward what they needed. We added an SSD, LCD screen and multifunction buttons, and on-case branding.
Ultimately, the system we created was something like 30% smaller, and it was fanless, so it was more efficient, and had a longer life expectancy. It also had a built-in watchdog timer and auto restart bios so it could avoid any complications related to sudden power outages, etc. And it actually ended up being even less expensive for their customers than what they were previously offering. So that all worked out quite well. In fact, they recently won the [Radio World] “Cool Stuff Award,†which was pretty, well, cool!
This whole process was consistent with our typical design timeline, by the way. From the initial conversations to mass production — with samples and prototyping — we took about three months.
Posted by conradb212 at June 25, 2013 3:16 PM