New Atom processors: N450, D410 and D510
On December 21, 2009, Intel announced the next generation of Atom processors. The new generation of Atom processors includes the single core N450, the single core D410 and the dual-core D510.
Up to this announcement, millions of netbooks (as well as related devices such as tablets and boards) used the Atom N270 processor with its two companion chips, the ICH7M I/O chip and the 945GSE graphics and memory controller. The combo of the latter two is known as the Intel 945GSE Express chipset and makes for a total of three chips. Of N-Series processors released prior to this latest announcement, the Atom N280 was really just a very slightly faster N270 (1.66GHz vs 1.6GHz), and the Atom 330 (technically not N-series, but still in the “Diamondville” family as opposed to the more industrial “Silverthorne” Z-series Atoms) a dual-core version of the desktop-oriented Atom 230.
With the new chips, the big news is that Intel reduced the chip count from three to two by integrating the graphics and memory controller into the CPU itself. The old ICH7M I/O controller chip is replaced with the Intel NM10 Express. This means fewer chips to mount, lower power consumption, and, not mentioned, one less reason to seek third party chipsets (such as NVIDIA’s Ion Graphics Processors).
Of the three new processors, the N450 is specifically geared towards netbooks whereas the D410 and D510 processors, all working in conjunction with the new NM10 I/O controller, are geared towards low-end desktops. The new NM10 I/O controller consumes just two watts compared to the older southbridge ICH7M’s 3.3 watts. More amazingly, while the old GMCH display and memory controller with its 945GSE northbridge chip with GMA950 graphics consumed six watts, the Graphics Media Accelerator 3150-based integrated solution only adds about three watts to the consumption of the netbook-oriented N450 (chip max TDP (thermal design power, a measure of power consumption) 5.5 watts vs 2.5 watts of the N270 w/o graphics).
From what I can tell, the GMA3150 has hardware acceleration for MPEG-2 but not for H.264, so there’s still no HD hardware decoding, which means a third-party HD decoder chip will come in handy. Onboard video is now likely to move from 17 : 10 aspect ratio 1024 x 600 pixel to a somewhat more palatable 1366 x 768 pixel, with significantly higher (2048 x 1536) external analog video possible (though some reports say that the N-Series chip is limited to 1400 x 1050, which would be less than what we have now). Somewhat surprisingly for a new chip, memory support is for DDR2 instead of the newer DDR3 standard.
Transistor count goes from the N270’s 47 million to 225 million in the new single core models and 317 in the new dual-core chip, which means the CPU alone goes from 47 to 92 million transistors, with the graphics and memory controllers using about 133 million transistors. What exactly the extra 45 million transistors do is not clear as the tech specs look pretty much the same.
Note that Intel targets the D410 and D510 processors specifically for desktops. Though the D410 has the same clockspeed and uses the same NM10 I/O controller, it max TDP is almost twice that of the N450, 10 watts versus just 5.5. That’s likely due to the graphics core running at twice the speed in D-series chips (400 vs 200MHz).
Overall, it doesn’t look like the new Atoms, which have the Intel 64 extensions, will bring much of a performance improvement to netbooks and netbook-level rugged or embedded devices. Reducing the chip count from three to two is nice, but the Z-series processors already had that. Graphics seem somewhat improved, but not enough to make a huge difference, and there’s still no HD playback hardware support. I am also not quite sure why the D410 and D510 processors are aimed at the desktop when the D410 chip combo has a total system TDP that’s the same as that of the N270 and N280 (12 vs 11.8 watts), and the dual-core D510 just a bit more (15 vs. 11.8 watts). Also interesting is that Intel highlights the smaller footprint when it was a larger footprint that was lauded at the introduction of the “large package” P and PW series of industrial processors just a bit ago.
Overall, it’s good to see these new Atom chips although I can’t help but feeling that Intel looked out for itself more than adding compelling value for consumers.
Here is Intel’s list of the entire Atom processor family.