Thoughts about display resolutions
The resolution of computer displays is an interesting thing. There are now handhelds with the same number of pixels as large flatscreen TVs, Apple claims its “retina” displays are so sharp that the human eye can no longer see individual pixels, and the very term “high definition” is in the process of being redefined. Let’s see what happened with display resolution and where things are headed, both in handhelds and in larger systems, and what 4k2k is all about.
Color monitors more or less started with the original IBM PC’s 320 x 240 pixel resolution. In 1984, the monochrome Hercules video card provided 720 x 350 pixel for IBM compatibles. For a long time IBM’s 640 x 480 VGA, introduced 1987 with their PS/2 computers, was considered a high resolution standard for the desktop and for notebooks. Then came 800 x 600 pixel SVGA and 1024 x 768 pixel XGA, and those two hung around for a good decade and a half in everything from desktops to notebooks to Tablet PCs. Occasionally there were higher resolutions or displays with aspect ratios different from the 4:3 format that’d been used since the first IBM PC, but those often suffered from lack of driver and software support, and so pretty much everyone stayed with the mainstream formats.
It was really HDTV that drove the next advance in computer displays. During a 1998 factory tour at Sharp in Japan I had my first experience with a wide-format TV. It looked rather odd to me in my hotel room, sort of too wide and not tall enough and not really a TV, but, of course, that turned out where things were going. In the US, it would take a few more years until the advent of HDTV brought on wide-format, and terms such as 720p and 1080p entered our tech vocabulary. For a good while, smaller and less expensive flatscreen TVs used the 1280 x 720, or “720p,” format, while the larger and higher end models used full 1920 x 1080 pixel “1080p” resolution. That meant a wide 16:9 aspect ratio.
Desktop and notebook displays quickly followed suit. The venerable 1024 x 768 XGA became 1366 x 768 WXGA and full 1920 x 1080 pixel displays became fairly common as well, albeit more on the desktop than in mobile systems. Professional desktops such as the 27-inch Apple iMac adopted 2560 x 1440 resolution. On the PC side of things standards proliferated in various aspect ratios, resulting in unwieldy standards terminology such as WSXGA+ (1680 x 1050) or WQXGA (2560 x 1600).
An interesting thing happened. Whereas in the past, TVs and computer displays had very different ways to measure resolution, they’re now more and more the same, what with flatscreen TVs really being nothing more than very large monitors. The 1920 x 1080 pixel 1080p format, in particular, is everywhere. Amazingly, that’s becoming a bit of a problem.
Why? Because as TVs become ever larger, the same old 1080p resolution no longer looks quite as high definition as it did on smaller screens. Put a 42-inch and a 70-inch TV next to each other and you can plainly see the degradation in sharpness. The situation isn’t as drastic on notebooks because, after growing ever larger for many years, notebook displays have leveled off in size, and have even shrunk again (Apple no longer makes the 17-inch MacBook Pro, for example). Desktop monitors, however, keep getting larger (I use two 27-inch monitors side-by-side), and that means even “high definition” 1920 x 1080 doesn’t look so good anymore, at least not for office-type work with lots of small text. While I was excited getting a reasonably priced HP Pavilion 27-inch 1080p IPS monitor for the PC sitting next to my Mac, I find it almost unusable for detail work because the resolution just isn’t high enough to cleanly display small text.
While current resolution standards are running out of steam on larger displays, the situation is quite different in the small screens used on handhelds and smartphones. There we have a somewhat baffling dichotomy where many industrial handhelds still use the same low-res 320 x 240 QVGA format that’s been used since the dawn of (computer) time, whereas the latest smartphones have long since moved to 1280 x 800 and even full 1920 x 1080 resolution. Tablets, likewise, pack a lot of pixels onto the rather small 7-inch and 10-inch formats that make up the great majority of the tablet market. Apple led the way with the “retina” 2048 x 1536 pixel resolution on the 3rd generation iPad. That’s like a 2×2 matrix of 1024 x 768 pixel XGA displays all in one small 9.7-inch screen. Trumping even that, the latest Kindle Fire HDX tablet packs an astounding 2560 x 1600 pixel onto its 8.9-inch screen. So for now, smartphones and tablets are at the front of the high-resolution revolution.
Somehow, we quickly get used to higher resolution. Older displays that we remember looking great now look coarse and pixellated. With technology you can never go back. The state-of-the-art almost instantly becomes the acceptable minimum. Whereas our eyes used to expect a degree of blurriness and the ability to see individual pixels on a screen, that’s less and less acceptable as time goes on. And it really does not make much sense to declare 1080 as “high definition” when by now that resolution is used on anything between a smartphone and an 80-inch TV.
Fortunately, the next thing is on the horizon for TVs and monitors, and it’s called 2k4k, which stands for 2,000 x 4,000 pixel. 2160p would be a better name for this likely standard as it is simply a 2×2 matrix of current four current 1080p resolution displays, or 3,840 x 2,160 pixel. That still only means that a giant new 80-inch screen will have no more than the pixel density of a 1080p 40-inch display, but it’s certainly a logical next step.
I had all of this on my mind, when I received an email offer from one of my favorite electronics places. It was for a 39-inch Seiki TV/monitor with 4k resolution for a very attractive price and free shipping. I impulsed-ordered it on the spot, telling myself that I need to know where the 4k technology stands and what, at this point, it can and cannot do. And this would finally be a monitor where I could watch the 4k video my GoPro 3 Black Edition can produce.
So I got the Seiki and it’s a great deal and bargain. Or it would be if I actually had anything that could drive a 2k4k display in its native mode, which I don’t. In fact, at this point there is virtually nothing that can drive a 4k display in full 4k 3840 x 2160 pixel resolution. Yes, the 4k videos from my GoPro 3 Black Edition would probably look great on it, but that would require me to copy the video footage to a PC that can drive an external 4k monitor, which virtually no stock PCs can do today. DVD or Blu-Ray players certainly can’t display in 2k4k, and even brand-new gear like the Sony PS4 game console can’t. I COULD, of course, get a low-end 4k-capable video card from AMD, but I am not sure any of the PCs in the RuggedPCReview office could actually even accommodate such a card.
The unfortunate truth is that as of late 2013, there’s very little gear that can send a true 4K video signal to a 4K TV or monitor. Which means that most content will be viewed in up-sampled mode, which may or may not look great. This will undoubtedly become a marketing issue in the consumer space—there will be great interest and great expectations in 4K TVs, but just as was the case with 3D TVs a couple of years ago, there will be virtually no 4K sources and content. And that can make for a customer backlash. There are some very detailed news on Amazon (see here) that provide an idea of where things stand.
What does all that mean for rugged mobile technology? Not all that much for now, but I am certain that the ready availability of super-high resolution on smartphones and consumer tablets will change customer expectations for rugged device displays just as capacitive touch changed touch screen expectations. Once the (technology) cat’s out of the bag, that’s it. It won’t go back in.
And just as I finished this entry, I see that Dell announced 24-inch and 32-inch UltraSharp monitors with 4k 3840 x 2160 resolution, and a 28-inch version will soon follow (see Dell news). Given that Dell is the leading flat-panel vendor in the US and #2 in the world, that likely means that we’ll soon see a lot more systems capable of supporting 4k resolution.